Skip to main content

Merge Sort On Linked List | Data Structure in C++

Introduction:
Merge Sort: Merge Sort is basically a sorting technique to sort the data. so basically we use it with array.but today we will apply it in linked list.

Problem Statement:
We have given a linked list, and we have to sort it using any sorting technique.

eg: Input: 1->4->5->2->NULL
      Output: 1->2->4->5->NULL

Solution:
To apply merge sort on linked list, we will maintain three function.
1.we should have a function to find the middle of the linked list.(findMid function)
2.we should have a function which will break the linked list into two parts.(mergeSort function)
3.we should have a function which will merge two list in sorted order.(merge function)

Important Point: first of all we have to find the tail of the list. and then we will pass head as well as tail to our merge sort function. kindly go through the code. you will understand each function easily.

Full Code: Merge Sort In C++ On Linked List

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode *findMid(ListNode* l1, ListNode* l2){
        ListNode* slow = l1;
        ListNode* fast = l1;
        while(fast!=l2 && fast->next!=l2){
            slow=slow->next;
            fast=fast->next->next;
        }
        return slow;
    }
   
    ListNode *merge
(ListNode *l1, ListNode *l2){
        ListNode *newlist=NULL;
        ListNode *temp;
       
        while(l1!=NULL && l2!=NULL){
            if(l1->val <= l2->val){
                if(newlist==NULL){
                   newlist = new ListNode();
                   newlist->val = l1->val;
                   newlist->next=NULL;
                    temp=newlist;
                }
                else{
                    ListNode *temp1 = new ListNode();
                    temp1->val=l1->val;
                    temp1->next=NULL;
                    temp->next=temp1;
                    temp=temp1;
                }
                l1=l1->next;
            }
            else{
                if(newlist==NULL){
                   newlist = new ListNode();
                   newlist->val = l2->val;
                   newlist->next=NULL;
                    temp=newlist;
                }
                else{
                    ListNode *temp1 = new ListNode();
                    temp1->val=l2->val;
                    temp1->next=NULL;
                    temp->next=temp1;
                    temp=temp1;
                }
                l2=l2->next;
            }
        }
        while(l1!=NULL){
            ListNode *temp1 = new ListNode();
                    temp1->val=l1->val;
                    temp1->next=NULL;
                    temp->next=temp1;
                    temp=temp1;
                    l1=l1->next;
        }
        while(l2!=NULL){
            ListNode *temp1 = new ListNode();
                    temp1->val=l2->val;
                    temp1->next=NULL;
                    temp->next=temp1;
                    temp=temp1;
                    l2=l2->next;
        }
        return newlist;
           
    }
   
    ListNode *mergeSort(ListNode* left, ListNode *right){
        if(left==right){
            ListNode* temp3 = new ListNode();
            temp3->val=left->val;
            temp3->next=NULL;
            return temp3;
        }
        ListNode* mid = findMid(left,right);
        ListNode* ls = mergeSort(left,mid);
        ListNode* rs = mergeSort(mid->next,right);
        ListNode* nl = merge(ls,rs);
        ListNode* print = nl;
        return nl; 
    }
   
    ListNode* sortList(ListNode* head) {
        if(head==NULL || head->next==NULL)
            return head;
        ListNode* tail = head;
        while(tail->next!=NULL){
            tail=tail->next;
        }
        ListNode *ans = mergeSort(head,tail);
        return ans;
       
           
    }
};

Conclusion:
we are doing all thing, which we do when we perform merge sort on array. first thing is you must know about first node and last node of the list. after that you will find the mid of the list. then call mergesort function on both halves and so on. so there is nothing new except syntax.

Comments

Popular posts from this blog

Disjiont Set Union-Find Data Structure | Code In C++

 Introduction:  In this tutorial we are going to write full program of disjoint set union find advance data structure in c++.  Problem Description: Disjoint Set Union (DSU) is an advance data structure, which basically uses in graph algorithms to find cycles. Codes:  Method1: Brute Force #include<bits/stdc++.h> using namespace std; int find(int f,vector<int>&dsuf){     if(dsuf[f]==-1)         return f;     return find(dsuf[f],dsuf); } void union_op(int from, int to, vector<int>& dsuf){     dsuf[from]=to; } bool isCycle(vector<pair<int,int> >&edge_list, vector<int>&dsuf){     for(int i=0;i<edge_list.size();i++){         int parent1=find(edge_list[i].first,dsuf);         int parent2=find(edge_list[i].second,dsuf);         if(parent1==pare...

Target Sum | Backtracking Problem

Introduction: In this tutorial we are going to solve a problem "Target Sum" which is from leetcode. and believe me it's really a good problem to understand Backtracking(Recursion). and if you try to understand the problem as well as code you will get a clear picture of Backtracking. Problem Statement: Link To Problem You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and - . For each integer, you should choose one from + and - as its new symbol. Find out how many ways to assign symbols to make sum of integers equal to target S. Input: nums is [1, 1, 1, 1, 1], S is 3. Output: 5 Explanation: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3. Solution: As given in question, we have two operation + and -. so we will make recursive call for + and - . and if we have sum as target and we have reached upto the last ind...

Group Anagrams solution with explanation:Leetcode solution

what is Anagrams? suppose we have two strings and the characters present in both of the strings are same. then both will be called anagram of each other. eg:" rat" and "art" both are anagram of each other. the characters present in both string are same. eg: "raat" and "art" these are not anagrams of each other. and the reason is that the frequency of "a" in "raat" is 2. while the frequency of "a" in "art" is 1. so these are not anagrams of each other. in short two strings will be anagram of each other if they have same characters and the count(frequency) of each and every character must be same in both strings. Solution: There are different ways to solve this question, so here we are going to use Hashmap to solve this question. cause whenever there is need to search we should go with the data structure which use balanced binary tress or hashing. and we know that Hashmap  uses balanced binary trees. so using...