Skip to main content

DFS Application | Longest Increasing Path in a Matrix

Intoduction:
In this tutorial we are going to solve a problem from leetcode, which is a good problem for applying recursion on 2D matrix or how can we apply DFS on 2D matrix.

Question Link : Leetcode

Input: nums = 
[
  [9,9,4],
  [6,6,8],
  [2,1,1]
] 
Output: 4 
Explanation: The longest increasing path is [1, 2, 6, 9].

Solution:

So basically what we are going to do is making recursive calls in all four direction.

Approach1: Recursion(this will fail in last three test cases) and that's why we will use approach2.

Full Code:

    int helper(vector<vector<int>>& matrix, int x, int y, int val, int flag, int temp){
        if(x<0 || x>=matrix.size() || y<0 || y>=matrix[x].size()){
            return temp;
        }
        if( flag!=0 && matrix[x][y]>val){
            temp++;
        }
        if(flag!=0 && matrix[x][y]<=val){
            return temp;
        }
        int ll = helper(matrix, x-1,y, matrix[x][y],1,temp);// up
        int lr = helper(matrix, x+1,y, matrix[x][y],1,temp); //down
        int lb = helper(matrix, x,y-1, matrix[x][y],1,temp); //left
        int lt = helper(matrix, x,y+1, matrix[x][y],1,temp);//right
        return max(max(ll,lr),max(lb,lt));
    }
    int longestIncreasingPath(vector<vector<int>>& matrix) {
        int maxcount=0;
        for(int i=0;i<matrix.size();i++){
            for(int j=0;j<matrix[i].size();j++){
               int count = helper(matrix,i,j,matrix[i][j],0,1);
                if(count>maxcount)
                    maxcount=count;
            }
        }
        return maxcount;
    }

Approach2: Recursion with Memoization

Full Code:

 int helper(vector<vector<int>>& matrix, int x, int y, int val, int flag, int temp, vector<vector<int>>&dp){
        if(x<0 || x>=matrix.size() || y<0 || y>=matrix[x].size()){
            return temp;
        }
        if(flag!=0 && matrix[x][y]<=val){
            return temp;
        }
        if(dp[x][y]!=-1 && matrix[x][y]>val){
            return dp[x][y];
        }
       /* if( flag!=0 && matrix[x][y]>val){
            temp++;
        }*/

        int ll = helper(matrix, x-1,y, matrix[x][y],1,temp,dp);
        int lr = helper(matrix, x+1,y, matrix[x][y],1,temp,dp);
        int lb = helper(matrix, x,y-1, matrix[x][y],1,temp,dp);
        int lt = helper(matrix, x,y+1, matrix[x][y],1,temp,dp);
        if(dp[x][y]==-1)
            dp[x][y]=1+max(max(ll,lr),max(lb,lt));
        return 1+max(max(ll,lr),max(lb,lt));
    }
    int longestIncreasingPath(vector<vector<int>>& matrix) {
        int maxcount=1;
        if(matrix.size()==0){
            return 0;
        }
        vector<vector<int>>dp(matrix.size(),vector<int>(matrix[0].size(),-1));
        for(int i=0;i<dp.size();i++){
            for(int j=0;j<dp[i].size();j++){
                cout<<dp[i][j]<<" ";
            }
            cout<<endl;
        }
        for(int i=0;i<matrix.size();i++){
            for(int j=0;j<matrix[i].size();j++){
                if(dp[i][j]==-1){
                    int count = helper(matrix,i,j,matrix[i][j],0,0,dp);
                    if(count>maxcount)
                        maxcount=count;
                }
                else{
                    if(dp[i][j]>maxcount)
                        maxcount=dp[i][j];
                }
            }
        }
        return maxcount;
    }

Conclusion:
we are basically making four recursive calls for each direction. and then returning max of all those 4 values. To memoise already calculated path we have a 2D vector and it will increase the efficiency of our program.

Comments

Popular posts from this blog

Disjiont Set Union-Find Data Structure | Code In C++

 Introduction:  In this tutorial we are going to write full program of disjoint set union find advance data structure in c++.  Problem Description: Disjoint Set Union (DSU) is an advance data structure, which basically uses in graph algorithms to find cycles. Codes:  Method1: Brute Force #include<bits/stdc++.h> using namespace std; int find(int f,vector<int>&dsuf){     if(dsuf[f]==-1)         return f;     return find(dsuf[f],dsuf); } void union_op(int from, int to, vector<int>& dsuf){     dsuf[from]=to; } bool isCycle(vector<pair<int,int> >&edge_list, vector<int>&dsuf){     for(int i=0;i<edge_list.size();i++){         int parent1=find(edge_list[i].first,dsuf);         int parent2=find(edge_list[i].second,dsuf);         if(parent1==pare...

Target Sum | Backtracking Problem

Introduction: In this tutorial we are going to solve a problem "Target Sum" which is from leetcode. and believe me it's really a good problem to understand Backtracking(Recursion). and if you try to understand the problem as well as code you will get a clear picture of Backtracking. Problem Statement: Link To Problem You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and - . For each integer, you should choose one from + and - as its new symbol. Find out how many ways to assign symbols to make sum of integers equal to target S. Input: nums is [1, 1, 1, 1, 1], S is 3. Output: 5 Explanation: -1+1+1+1+1 = 3 +1-1+1+1+1 = 3 +1+1-1+1+1 = 3 +1+1+1-1+1 = 3 +1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3. Solution: As given in question, we have two operation + and -. so we will make recursive call for + and - . and if we have sum as target and we have reached upto the last ind...

Group Anagrams solution with explanation:Leetcode solution

what is Anagrams? suppose we have two strings and the characters present in both of the strings are same. then both will be called anagram of each other. eg:" rat" and "art" both are anagram of each other. the characters present in both string are same. eg: "raat" and "art" these are not anagrams of each other. and the reason is that the frequency of "a" in "raat" is 2. while the frequency of "a" in "art" is 1. so these are not anagrams of each other. in short two strings will be anagram of each other if they have same characters and the count(frequency) of each and every character must be same in both strings. Solution: There are different ways to solve this question, so here we are going to use Hashmap to solve this question. cause whenever there is need to search we should go with the data structure which use balanced binary tress or hashing. and we know that Hashmap  uses balanced binary trees. so using...